Article ID Journal Published Year Pages File Type
6846064 Nuclear Energy and Technology 2017 5 Pages PDF
Abstract
In both cases the phase thus formed is of isomorphic matrix type and is thermally metastable and, in contrast to 0 × 18H10T steel, Fe-15Cr-35Ni-11 W alloy undergoes softening. The analysis of published data on the possible causes inflicting similar structural-phase transformations in materials subjected to intensive ion-plasma treatment was performed. Concentrations of crystalline lattice stacking faults in Fe-15Cr-35Ni-11 W alloy and in 0 × 18H10T steel in the deformed state were determined by X-ray diffraction analysis. It was found that concentration of structural stacking faults in this state is 4 times higher for 0 × 18H10T steel, which indicates the lower stacking fault energy in this steel. Conclusion was made that the observed effects are associated with the mechanism of radiation-induced plastic deformation. Structural-phase changes in Fe-15Cr-35Ni-11 W alloy are associated with deformation by twinning, in contrast to 0 × 18H10T steel, where the observed transformations are due to slip deformation.
Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, ,