Article ID Journal Published Year Pages File Type
686349 Bioresource Technology 2008 8 Pages PDF
Abstract

An indigenous purple nonsulfur bacterium Rhodopseudomonas palustris WP3-5 was used to produce hydrogen phototrophically from acetate (HAc) and butyrate (HBu), which are the major soluble products from acidogenic dark fermentation. Statistical experimental design methodology was applied to identify optimal composition of the two carbon substrates in the medium, leading to better H2 production performance of R. palustris WP3-5. Three performance indexes were used to assess the effectiveness of the phototrophic H2 production; they were H2 yield (YH2YH2), maximum H2 production rate (Rmax) and maximum cumulative H2 evolution (Hmax). An overlay contour plot was used to determine the optimal concentration range of HAc and HBu, taking into account all three performance indexes (i.e., Rmax, Hmax, and YH2YH2) simultaneously. With the response surface analysis, R. palustris WP3-5 could produce H2 efficiently with the best Rmax, Hmax, and YH2YH2 of 39.5 ml/h, 2738 ml, and 51.6%, respectively. This performance is superior to most reported values in the literature, indicating that the statistical experimental design is an effective tool to improve phototrophic H2 production with R. palustris WP3-5.

Related Topics
Physical Sciences and Engineering Chemical Engineering Process Chemistry and Technology
Authors
, , , ,