Article ID Journal Published Year Pages File Type
687257 Chemical Engineering and Processing: Process Intensification 2011 6 Pages PDF
Abstract

The effect of inertia on gravity-driven thin film free-surface flow over substrates containing topography is considered. Flow is modelled using a depth-averaged form of the governing Navier–Stokes equations and the discrete analogue of the coupled equation set solved accurately using an efficient full approximation storage (FAS) and full multigrid (FMG) technique. The free-surface disturbance induced by topographic features is illustrated by considering examples of gravity-driven flow over and around peak, trench and occlusion topography. Results are presented which demonstrate how increasing Reynolds number can significantly enhance the magnitude of free-surface disturbances, a feature which may have important consequences for the wide range of coating process that aim to maximise free-surface planarity.

Related Topics
Physical Sciences and Engineering Chemical Engineering Process Chemistry and Technology
Authors
, , , ,