Article ID Journal Published Year Pages File Type
687374 Chemical Engineering and Processing: Process Intensification 2010 8 Pages PDF
Abstract
Uniform zeolite beta particles about 800 nm in diameter were synthesized by a hydrothermal method, and functionalized by γ-glycidoxypropyltrimethoxysilane (GPTMS). Subsequently, chitosan (CS) membranes filled by GPTMS-modified zeolite beta particles were prepared, and characterized by SEM, FT-IR, XRD and TGA. Compared with the pure CS and Nafion®117 membrane, these CS/zeolite beta hybrid membranes show apparently the lower methanol permeability, which could be assigned to the better interfacial morphology and compatibility between the GPTMS-modified zeolite beta particles and chitosan matrix. In all the prepared CS/zeolite beta hybrid membranes, the CS membrane filled by 10 wt.% GPTMS-modified zeolite beta particles exhibits the lowest methanol permeability, which is 4.4 × 10−7 and 2.2 × 10−7 cm2 s−1 at 2 and 12 M methanol concentration, respectively. The proton conductivity of this hybrid membrane is 1.31 × 10−2 S cm−1, which is slightly lower than that of the pure CS membrane. The selectivity of CS/GPTMS-zeolite beta membranes is comparable with Nafion® 117 at 2 M methanol concentration, and much higher at 12 M methanol concentration.
Related Topics
Physical Sciences and Engineering Chemical Engineering Process Chemistry and Technology
Authors
, , , ,