Article ID Journal Published Year Pages File Type
688471 Chemical Engineering and Processing: Process Intensification 2009 7 Pages PDF
Abstract

This paper describes studies carried out into downstream processing for an enzymatic system producing isomaltose by glucosyltransfer, in which the isomaltose appears as an intermediate in a consecutive reaction chain. To avoid these consecutive reactions, reaction-integrated separation by adsorption was established. A specific β-zeolite was investigated as a selective adsorbent for the product isomaltose, and the influence of eluent and temperature on the desorption process was researched. As eluent, 50% (v/v) ethanol and pure water were compared. Using 50% ethanol the amount of desorbed isomaltose is about 23% higher than in pure water. In both cases desorption takes place over a period of more than 50 h and at a temperature of 70 °C. Residual moisture on zeolite significantly decreases adsorption capacity. In batch experiments, the half-life of zeolite stored in water is about 50 h, but for a continuous flow in a packed bed column, the half-life decreases to 7 h. Based on these findings, a design for downstream processing is proposed using a counter-current flow temperature swing displacement desorption sequence. Here, product concentration can be increased by multiple usage of the desorption liquid.

Related Topics
Physical Sciences and Engineering Chemical Engineering Process Chemistry and Technology
Authors
, , , ,