Article ID Journal Published Year Pages File Type
690288 Journal of the Taiwan Institute of Chemical Engineers 2016 17 Pages PDF
Abstract

•Inhibition of mild steel corrosion in 1 M HCl by alkyl imidazolium ionic liquids.•Polarization results showed that the studied ILs is mixed-type inhibitors.•Theoretical quantum chemical calculations, QSAR analyses and Monte Carlo simulations studies were used to correlate experimental results.

Inhibition of mild steel corrosion in 1 M HCl solution by some alkylimidazolium-based ionic liquids (ILs) namely 1-ethyl-3-methylimidazolium ethylsulfate [EMIM]+[EtSO4]−, 1-ethyl-3-methylimidazolium acetate [EMIM]+[Ac]−, 1-butyl-3-methylimidazolium thiocyanate [BMIM]+[SCN]−, 1-butyl-3-methylimidazolium acetate [BMIM]+[Ac]− and 1-butyl-3-methylimidazolium dicyanamide [BMIM]+[DCA]− was investigated using electrochemical, spectroscopic, surface morphology, quantum chemical calculations, quantitative structure activity relationship (QSAR) and Monte Carlo simulation methods. The studied ILs showed appreciable inhibition efficiencies within the range of concentrations considered. Polarization measurements showed that the studied ILs are mixed-type inhibitors, that is, they inhibit both the anodic mild steel dissolution and cathodic hydrogen evolution reactions. The adsorption of the ILs on mild steel affords competitive physisorption and chemisorption processes and obeyed the Langmuir adsorption isotherm. Spectroscopic studies confirmed chemical interactions between the ILs and mild steel, while the scanning electron microscopy (SEM) images revealed the formation of protective film of the inhibitors on mild steel surface. Theoretical quantum chemical calculations, QSAR analyses and Monte Carlo simulations studies were used to correlate experimental results. The best fit QSAR equations are functions of molecular weight, fraction of electrons transferred from the inhibitor to the metal and dipole moment of the ILs.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Process Chemistry and Technology
Authors
, , , , , ,