Article ID Journal Published Year Pages File Type
691649 Journal of the Taiwan Institute of Chemical Engineers 2010 5 Pages PDF
Abstract

The steady boundary layer flow and heat transfer over a stretching sheet with Newtonian heating in which the heat transfer from the surface is proportional to the local surface temperature, is considered in this study. The transformed governing nonlinear boundary layer equations are solved numerically by a finite-difference method. Numerical solutions are obtained for the heat transfer from the stretching sheet and the wall temperature for a large range of values of the Prandtl number Pr. The Newtonian heating is controlled by a dimensionless conjugate parameter, which varies between zero (insulated wall) and infinity (wall temperature remains constant). The important findings in this study are the variation of the surface temperature and heat flux from the stretching surface with the conjugate parameter and Prandtl number. It is found that these parameters have essential effects on the heat transfer characteristics.

Related Topics
Physical Sciences and Engineering Chemical Engineering Process Chemistry and Technology
Authors
, , ,