Article ID Journal Published Year Pages File Type
691995 Journal of the Taiwan Institute of Chemical Engineers 2009 7 Pages PDF
Abstract
Cysteine has been considered as a “hydrophilic” amino acid because of its pKa and its ability to form (weak) hydrogen bonds. However, cysteines are found mostly in hydrophobic environments, either in S-S (disulphide) form or in free cysteine form. When free cysteines are found on the surface of proteins, they are often involved in catalytic residues, as in cysteine proteases, P-loop phosphatases, etc. Additionally, a unique property of cysteines is that their side-chain volume is different from all other amino acids. This study is focused on the discrimination between structural versus active free cysteines based on a local environment analysis which does not appear to have been attempted previously. We have demonstrated the corresponding structural positions associated with free cysteines in their three-dimensional localization environment. We examined protein samples including nine, sequenced, coronavirus proteases and cysteine-rich non-membrane proteins. Our present study shows that the sequential environments of free cysteines of coronavirus proteases are rather hydrophobic and that the free cysteines of non-membrane proteases have a higher amount of contacts to hydrophobic residues and lower amount of contacts to polar or charged residues.
Related Topics
Physical Sciences and Engineering Chemical Engineering Process Chemistry and Technology
Authors
, ,