Article ID Journal Published Year Pages File Type
693395 Progress in Organic Coatings 2011 7 Pages PDF
Abstract

Three benzophenone-based type II polymeric photoinitiators, poly(2-(4-benzophenone methylene ether)-1,3-dihydroxypropane maleate)) (PBM), poly(2-(4-benzophenone methylene ether)-1,3-dihydroxypropane succinate)) (PBS), and poly(2-(4-benzophenone methylene ether)-1,3-dihydroxypropane-co-2-(phenyl-methylene-ether)-1,3-dihydroxypropane maleate)) (PBPM) used for free radical UV curing systems, were prepared through the step-growth polymerization of 4-(2,3-epoxypropyloxy) benzophenone (EBP) with maleic anhydride and succinic anhydride, as well co-polymerization with phenyl glycidyl ether and maleic anhydride, respectively. The molecular structures were characterized with 1H NMR and FT-IR spectroscopy, and GPC analysis. For equimolar EBP and MA reaction system, the Mn led to the maximum of 6868 g/mol with the PDI of 1.22. The UV spectroscopy analysis showed that the synthesized polymeric photoinitiators possess higher UV absorption intensity in the wavelength range of 300–400 nm compared with benzophenone (BP). The photoinitiating activity was examined based on the photopolymerization of tripropyleneglycol diacrylate (TPGDA) in the presence of triethylamine as a coinitiator by using Photo-DSC method. It was found that PBM and PBS showed higher photoinitiating efficiency than BP in the photopolymerization of TPGDA. Moreover, the side BP moiety incorporated into the polymeric chain possessed higher initiating activity than end-capped BP moiety. Moreover, PBM with higher molecular weight was more efficient to photoinitiate TPGDA UV-cured. The side chromophore group distribution in the molecular chain also affected the photoinitiating activity. The highest photopolymerization rate at the peak maximum was obtained by the photoinitiation with PBM prepared with the molar feed ratio of 1.0 of EBP to MA.

► Three type II polymeric photoinitiators PBM, PBS, and PBPM were synthesized. ► Molecular weight and structure were modified by changing the molar feed ratio. ► The photoinitiating efficiency of photoinitiators was examined systematically. ► The adjustment of molecular weight can improve the photoinitiating efficiency.

Related Topics
Physical Sciences and Engineering Chemical Engineering Process Chemistry and Technology
Authors
, ,