Article ID Journal Published Year Pages File Type
693501 Progress in Organic Coatings 2010 5 Pages PDF
Abstract

The aim of this work was to investigate the effect of cerium concentration on microstructure, morphology and anticorrosion performance of cerium–silica hybrid coatings on magnesium alloy AZ91D. Vinyltriethoxysilane (VETO) and γ-glycidoxypropyltrimethoxysilane (GPTMS) were employed as precursors to prepare sol–gel based silica coating. Cerium nitrate hexahydrate as dopant in five different concentrations was added into the silica coatings. Fourier transform infrared (FT-IR) spectrum analysis, viscosity measurements and scanning electron microscopy (SEM) were employed to characterize the microstructure and morphology of these coatings. It was found that with the increase of cerium concentration, the degree of decomposition of silane chains in the coating network increased. The corrosion resistance of the cerium–silica hybrid coatings was estimated by electrochemical impedance spectroscopy (EIS) measurements and potentiodynamic polarization tests. The results demonstrated that corrosion resistance of coatings initially increases and then decreases as cerium concentration goes up. When the cerium concentration is 0.01 M, corrosion resistance reaches its maximum.

Related Topics
Physical Sciences and Engineering Chemical Engineering Process Chemistry and Technology
Authors
, , , , , ,