Article ID Journal Published Year Pages File Type
694410 Acta Automatica Sinica 2011 9 Pages PDF
Abstract

A new method for computing numerical solutions to the inverse kinematics problem of robotic manipulators is developed in this paper. With the joint limitations, the electromagnetism-like method (EM) utilizes an attraction-repulsion mechanism to move the sample points towards the optimum solution rapidly. Based on this approximate solution given by EM, a modified Davidon-Fletcher-Powell (DFP) algorithm is developed to solve the problem at the desired precision. Unlike the traditional algorithms, this modified DFP (MDFP) algorithm randomly chooses the search step size between 0 and 1. Hence, the computational complexity is greatly reduced. The experimental results based on ten general test functions and PUMA 560 robot show that this new near-real time hybrid method can produce best performance.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering