Article ID Journal Published Year Pages File Type
694472 Acta Automatica Sinica 2010 9 Pages PDF
Abstract

The paper studies the problem of fault detection filter design for uncertain linear continuous-time systems. A design procedure dealing with parameter uncertainties is proposed for residual generation, the sensitivity to fault and the robustness against disturbances are both enhanced on residual outputs through satisfying some performance indexes. By the aid of the generalized Kalman-Yakubovich-Popov (GKYP) lemma, the fault sensitivity performance index can be dealt with in the given frequency range directly, which avoids approximations associated with frequency weights of the existing techniques. An iterative algorithm based on linear matrix inequality (LMI) is given to obtain the solutions. A numerical example is given to illustrate the effectiveness of the proposed methods.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering