Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
694726 | Annual Reviews in Control | 2014 | 10 Pages |
The paper considers the problem of Automated Guided Vehicles (AGVs) fleet scheduling subject to the right match-up of local cyclic acting AGV schedules to given workpiece machining schedules. The main contribution of this work is the solution to a constraint satisfaction problem aimed at AGVs fleet match-up scheduling while taking into consideration assumed itineraries of concurrently manufactured product types. In other words, assuming a given layout of FMS’s material handling and production routes of simultaneously manufactured work orders as well as cyclic schedules of concurrently manufactured product types, the goal is to provide a declarative model enabling multimodal processes, i.e. employing AGVs, hoists, lifts, etc. demand-responsible scheduling of transportation/handling services. An algebra-like driven approach to cyclic scheduling based on step-by-step composition of multimodal transportation network sub-structures is proposed. Results of computational experiments assessing scalability of the method provided are presented as well.