Article ID Journal Published Year Pages File Type
695620 Automatica 2014 14 Pages PDF
Abstract

We present a general framework for the systematic synthesis of robust gain-scheduling controllers by convex optimization techniques and for uncertain dynamical systems described by standard linear fractional representations. We distinguish between linear time-varying parameters, which are assumed to be available online as scheduling parameters for the controller, and genuine uncertainties, not necessarily time-varying, parametric or linear, that are not available online. Under the rough hypothesis that the control channel is not affected by the unmeasurable uncertainties and that the properties of the uncertainties and scheduling variables are captured by suitable families of integral quadratic constraints, this paper reveals how controller synthesis can be turned into a genuine semi-definite program. The design framework is shown to encompass a rich class of concrete scenarios.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, ,