Article ID Journal Published Year Pages File Type
696143 Automatica 2013 7 Pages PDF
Abstract

The main purpose of this paper is to adapt the so-called Shubert algorithm for extremum seeking control of general dynamic plants. This algorithm is a good representative of the “sampling optimization methods” that achieve global extremum seeking on compact sets in the presence of local extrema. The algorithm applies to Lipschitz mappings; the model of the system is assumed unknown but the knowledge of its Lipschitz constant is assumed. The controller depends on a design parameter, the “waiting time”, and tuning guidelines that relate the design parameter and the region of convergence and accuracy of the algorithm are presented. The analysis shows that semi-global practical convergence (in the initial states) to the global extremum can be achieved in presence of local extrema if compact sets of inputs are considered. Numerical simulations for global optimization in the presence of local extrema are provided to demonstrate the proposed approach.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, , , ,