Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6965014 | Accident Analysis & Prevention | 2018 | 12 Pages |
Abstract
The study presented in this paper thoroughly investigated the factors contributing to freeway crashes in China based on detailed crash data, traffic characteristics, freeway geometry, pavement conditions, and weather conditions. To properly account for the over-dispersion of data and unobserved heterogeneity, a random effects negative binomial (RENB) model and a random parameters negative binomial (RPNB) model were applied, along with a negative binomial (NB) model. The analysis revealed a large number of crash frequency factors, including several interesting and important factors rarely studied in the past, such as the safety effects of climbing lanes. Moreover, the RENB and RPNB models were found to considerably outperform the NB model; however, although the RPNB exhibited better goodness-of-fit than the RENB model, the difference was rather small. The findings of this study shed more light on the factors influencing freeway crashes in China. The results will be useful to highway designers and engineers for creating, building, and operating safe freeways as well as to safety management departments for developing effective safety countermeasures. The study presented in this paper also provides additional guidance for choosing relevant methods to analyze safety and to identify safety factors.
Keywords
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Chemical Health and Safety
Authors
Qinzhong Hou, Andrew P. Tarko, Xianghai Meng,