Article ID Journal Published Year Pages File Type
696715 Automatica 2010 7 Pages PDF
Abstract

This paper shows that the matrix inequality conditions for stability/stabilizability of linear differential inclusions derived from two classes of composite quadratic functions are not conservative. It is established that the existing stability/stabilizability conditions by means of polyhedral functions and based on matrix equalities are equivalent to the matrix inequality conditions. This implies that the composite quadratic functions are universal for robust, possibly constrained, stabilization problems of linear differential inclusions. In particular, a linear differential inclusion is stable (stabilizable with/without constraints) iff it admits a Lyapunov (control Lyapunov) function in these classes. Examples demonstrate that the polyhedral functions can be much more complex than the composite quadratic functions, to confirm the stability/stabilizability of the same system.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, ,