Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
696752 | Automatica | 2012 | 10 Pages |
This paper deals with the problem of estimating the state of a discrete-time linear stochastic dynamical system on the basis of data collected from multiple sensors subject to a limitation on the communication rate from the sensors. More specifically, the attention is devoted to a centralized sensor network consisting of: (1) multiple remote nodes which collect measurements of the given system, compute state estimates at the full measurement rate and transmit data (either raw measurements or estimates) at a reduced communication rate; (2) a fusion node that, based on received data, provides an estimate of the system state at the full rate. Local data-driven transmission strategies are considered and issues related to the stability and performance of such strategies are investigated. Simulation results confirm the effectiveness of the proposed strategies.