Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6969213 | Journal of Hazardous Materials | 2018 | 11 Pages |
Abstract
A novel water-compatible surface molecularly imprinted thiol-functionalized titanium dioxide (TiO2) material (CMIP-coated TiO2) was prepared in water, using 2, 4-dinitrophenol (2, 4-DNP) as template molecule and o-phenylenediamine (OPDA) as both functional monomer and cross-linker. The as-synthesized materials were characterized by FESEM, FTIR, XRD, BET and UV-vis DRS. Moreover, we have investigated the adsorption capacity, adsorption selectivity and photodegradation activity of the CMIP-coated TiO2 and non-molecular imprinted materials (CNIP-coated TiO2). Additionally, the effects of pH and concentration of 2, 4-DNP on the degradation rate of 2, 4-DNP were also investigated. Results showed that CMIP-coated TiO2 exhibited higher adsorption capacity, greater selectivity and faster photodegradation activity for 2, 4-DNP compared with the CNIP-coated TiO2. Meanwhile, the specific selectivity to 2, 4-DNP over its structural analogue 4-nitrophenol (4-NP) and the enhanced photodegradation capacity were mainly attributed to the imprinted cavities on the surface of CMIP-coated TiO2. Taking advantage of efficient removal capacity, high reusability and no-additional chemicals in imprinted process, the prepared materials can be potentially applied to “green” removal of 2, 4-DNP in wastewater.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Chemical Health and Safety
Authors
Xiangxiang Zhou, Cui Lai, Danlian Huang, Guangming Zeng, Liang Chen, Lei Qin, Piao Xu, Min Cheng, Chao Huang, Chen Zhang, Chengyun Zhou,