Article ID Journal Published Year Pages File Type
6970336 Journal of Hazardous Materials 2016 28 Pages PDF
Abstract
Sulfur dioxide (SO2) is a major air pollutant and has significant impacts on plants. MicroRNAs (miRNAs) are a class of gene expression regulators that play important roles in response to environmental stresses. In this study, deep sequencing was used for genome-wide identification of miRNAs and their expression profiles in response to SO2 stress in Arabidopsis thaliana shoots. A total of 27 conserved miRNAs and 5 novel miRNAs were found to be differentially expressed under SO2 stress. qRT-PCR analysis showed mostly negative correlation between miRNA accumulation and target gene mRNA abundance, suggesting regulatory roles of these miRNAs during SO2 exposure. The target genes of SO2-responsive miRNAs encode transcription factors and proteins that regulate auxin signaling and stress response, and the miRNAs-mediated suppression of these genes could improve plant resistance to SO2 stress. Promoter sequence analysis of genes encoding SO2-responsive miRNAs showed that stress-responsive and phytohormone-related cis-regulatory elements occurred frequently, providing additional evidence of the involvement of miRNAs in adaption to SO2 stress. This study represents a comprehensive expression profiling of SO2-responsive miRNAs in Arabidopsis and broads our perspective on the ubiquitous regulatory roles of miRNAs under stress conditions.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Health and Safety
Authors
, , ,