Article ID Journal Published Year Pages File Type
697227 Automatica 2008 5 Pages PDF
Abstract

Collision avoidance (CA) systems are applicable for most transportation systems ranging from autonomous robots and vehicles to aircraft, cars and ships. A probabilistic framework is presented for designing and analyzing existing CA algorithms proposed in literature, enabling on-line computation of the risk for faulty intervention and consequence of different actions. The approach is based on Monte Carlo techniques, where sampling-resampling methods are used to convert sensor readings with stochastic errors to a Bayesian risk. The concepts are evaluated using a real-time implementation of an automotive collision mitigation system, and results from one demonstrator vehicle are presented.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, ,