Article ID Journal Published Year Pages File Type
6973282 Journal of Loss Prevention in the Process Industries 2015 5 Pages PDF
Abstract
The ignition of a combustible environment by hot jets is a safety concern in many industries. In explosion protection concepts, for a protection of the type “flameproof enclosures” a maximum permissible gap is of major importance. In this work a numerical framework is described to investigate the ignition processes by a hot turbulent jet which flows out from such gaps. A Probability Density Function (PDF) method in conjunction with a reaction-diffusion manifold (REDIM) technique is used to model the turbulent reactive flow. In this paper the ignition of a stoichiometric mixture of hydrogen/air gas by a hot exhaust turbulent jet is examined. The impact of the nozzle diameter on the ignition delay time is investigated, too. The method is used to explore the maximum nozzle diameter for specific boundary conditions for which there is no ignition.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Health and Safety
Authors
, , , ,