Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
697572 | Automatica | 2010 | 4 Pages |
In this paper, it is shown that the fractional-order derivatives of a periodic function with a specific period cannot be a periodic function with the same period. The fractional-order derivative considered here can be obtained based on each of the well-known definitions Grunwald–Letnikov definition, Riemann–Liouville definition and Caputo definition. This concluded point confirms the result of a recently published work proving the non-existence of periodic solutions in a class of fractional-order models. Also, based on this point it can be easily proved the absence of periodic responses in a wider class of fractional-order models. Finally, some examples are presented to show the applicability of the paper achievements in the solution analysis of fractional-order systems.