Article ID Journal Published Year Pages File Type
6976521 TIP 2017 10 Pages PDF
Abstract
Teak (Tectona grandis) is a timber tree of economic importance in tropical and subtropical forests. The aim of this work was to identify families of transcription factors (TFs) and enzyme-coding genes differentially expressed (DREs) in stem xylem and their regulation involved in abiotic stress response and xylogenesis in T. grandis. Therefore, the evolutionary distribution of 19 TFs of T. grandis was derived using a phylogenetic analysis. Besides, specific data mining procedures of databases and publications were performed in order to identify 320 Arabidopsis thaliana genes (orthologous to T. grandis) as experimental and predictive support. As results, we found transcription factors of the bZIP, MYB, NAC, ER, bHLH families, and enzyme-coding genes. Furthermore, interactome analysis in T. grandis showed a significant Pearson correlation for genes regulating metabolic pathways of phenylpropanoids and abiotic stress. Also, the coexpression network revealed nodes and edges between TgRAP1, TgMyB1, TgHSF1, TgMyB3, TgNAC1, TgTsiid1, TgLieTFs1, TgNuy3, TgRAP2 and TgNuy4 genes. Gene ontology analyses showed that 31 genes respond to abiotic stress, mainly TgHShT1, TgHSF1 and TgHSF2, as co-regulators. In addition, the TFs master regulator TgNAC1 was found to be involved in the co-regulation of other TFs.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Health and Safety
Authors
, , ,