Article ID Journal Published Year Pages File Type
697996 Automatica 2008 8 Pages PDF
Abstract

Graph matching is a fundamental problem that arises frequently in the areas of distributed control, computer vision, and facility allocation. In this paper, we consider the optimal graph matching problem for weighted graphs, which is computationally challenging due the combinatorial nature of the set of permutations. Contrary to optimization-based relaxations to this problem, in this paper we develop a novel relaxation by constructing dynamical systems on the manifold of orthogonal matrices. In particular, since permutation matrices are orthogonal matrices with nonnegative elements, we define two gradient flows in the space of orthogonal matrices. The first minimizes the cost of weighted graph matching over orthogonal matrices, whereas the second minimizes the distance of an orthogonal matrix from the finite set of all permutations. The combination of the two dynamical systems converges to a permutation matrix, which provides a suboptimal solution to the weighted graph matching problem. Finally, our approach is shown to be promising by illustrating it on nontrivial problems.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, ,