Article ID Journal Published Year Pages File Type
698368 Automatica 2008 7 Pages PDF
Abstract

An optimal iterative learning control (ILC) is proposed to optimize an accumulative quadratic performance index in the iteration domain for the nominal dynamics of linear discrete-time systems. Properties of stability, convergence, robustness, and optimality are investigated and demonstrated. In the case that the system under consideration contains uncertain dynamics, the proposed ILC design can be applied to yield a guaranteed-cost ILC whose solution can be found using the linear matrix inequality (LMI) technique. Simulation examples are included to demonstrate feasibility and effectiveness of the proposed learning controls.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, , , ,