Article ID Journal Published Year Pages File Type
698442 Automatica 2006 10 Pages PDF
Abstract

An adaptive output feedback control methodology is developed for a class of uncertain multi-input multi-output nonlinear systems using linearly parameterized neural networks. The methodology can be applied to non-minimum phase systems if the non-minimum phase zeros are modeled to a sufficient accuracy. The control architecture is comprised of a linear controller and a neural network. The neural network operates over a tapped delay line of memory units, comprised of the system's input/output signals. The adaptive laws for the neural-network weights employ a linear observer of the nominal system's error dynamics. Ultimate boundedness of the error signals is shown through Lyapunov's direct method. Simulations of an inverted pendulum on a cart illustrate the theoretical results.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, , ,