Article ID Journal Published Year Pages File Type
7003035 Tribology International 2015 9 Pages PDF
Abstract
The tribology behaviors of diamond and silicon dioxide (SiO2) nanoparticles were examined via molecular dynamics simulations; four cases were simulated. At low velocity and low load, the nanoparticles separated the two blocks from each other and acted as ball-bearings. The plastic deformation, temperature distribution, and friction force were all improved due to the action of the nanoparticles. However, the crushing of the SiO2 nanoparticles was accompanied by deformation-induced loss of the rolling effect, when the load was increased. Without nanoparticles, a transfer layer formed at high velocity and low load. The two nanoparticles provided support for a certain duration. However, at high velocity and high load, the support effect of these nanoparticles was lost in a short sliding time.
Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , , ,