Article ID Journal Published Year Pages File Type
7004280 Wear 2015 6 Pages PDF
Abstract
This study is intended to produce reliable quantitative information about adhesive wear phenomena of metallic materials in the early stage of dry sliding. The outcome of this study will contribute to the refinement of the physical model of a wear mechanism. A devised technical method was employed in the study to enable data acquisition linked with the position of measurement on the specimen and objective combinational analyses of plural kinds of tribological data. Quantitative analyses on the relationship between friction force and specimen displacement perpendicular to the sliding surface was carried out. Data analyses on the self-mated dry sliding of austenitic stainless steel clarified the existence of several elemental processes of adhesive mechanism with quantitative parameters such as the growth rate and the size of adhesive substances generated at the interface between sliding members. The influences of the relative humidity (RH) in an atmospheric air on the numerical parameters were revealed as well and they were interpreted into the physical model of the adhesive wear mechanism.
Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , ,