Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7004359 | Wear | 2015 | 9 Pages |
Abstract
Motivated by economic benefits and in order to achieve a compact production process for at least ten years, turning is investigated as an alternative manufacturing process. However due to the resulting lead structure on the shaft surface and the associated risk of leakage it has not become prevalent yet. In this paper turned shafts of the metastable austenitic steel AISI 347 (1.4550, X6CrNiNb1810) are investigated as alternative material for counter surfaces of radial shaft seal rings and compared to turned shafts of carburized AISI 5115 (1.7131, 16MnCr5). In addition to surfaces dry turned at room-temperature, cryogenic turned AISI 347 counter surfaces are analyzed. By applying cryogenic cooling, the formation of deformation-induced αâ²-martensite in the surface layer is possible during the turning process. Endurance tests in radial shaft seal ring test rigs are performed and complemented with detailed investigations of microstructure, micro-hardness and surface topography. The results are compared to results of state of the art ground AISI 5115 shafts.
Keywords
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Colloid and Surface Chemistry
Authors
D. Frölich, B. Magyar, B. Sauer, P. Mayer, B. Kirsch, J.C. Aurich, R. Skorupski, M. Smaga, T. Beck, D. Eifler,