Article ID Journal Published Year Pages File Type
7004880 Wear 2013 59 Pages PDF
Abstract
It was realized that the addition of the nanotubes to the base oil lowered the coefficient of friction of the DLC by more than 50% for the smooth, DLC-coated surfaces and up to 40% for the rough, DLC-coated surfaces. The nanoparticles were the most effective under boundary-lubrication conditions and had a negligible effect in the EHL regime. The surface roughness has a notable and two-fold effect: while the friction was lower on the smooth, compared to the rough, DLC-coated surfaces, the rough surfaces were better able to retain the nanoparticles within the contact during the running-in.
Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , ,