Article ID Journal Published Year Pages File Type
7007934 Desalination 2018 14 Pages PDF
Abstract
Most of the global population are not connected to the electrical grid and one third of these people have no access to potable water sources at the same time. Grid independent hybrid renewable energy systems (GIHRES), specifically wind and solar power, have attracted more attention to supply potable water and electricity requirements. Due to the complexity of this system, optimal balance between wind and solar resources and a convenient storage needs special attention to find a good engineering solution. In this paper for increasing the fresh water availability and to meet the load demand six GIHRES namely solar/battery or/hydrogen/reverse osmosis desalination (ROD), wind/battery or/hydrogen/ROD, and solar/wind/battery or/hydrogen/ROD are designed and modeled. For optimal design of these six systems improved bees algorithm is proposed. The results are compared with the results obtained by harmony search algorithm. From the results it is seen that the GIHRES-based battery energy storage more cost-effective than the GIHRES-based hydrogen energy storage. Also, hybridization of solar power, battery, and ROD at various maximum loss of power supply probability is the most cost-effective energy system. Moreover, the results obtained by proposed method are quite promising.
Related Topics
Physical Sciences and Engineering Chemical Engineering Filtration and Separation
Authors
,