Article ID Journal Published Year Pages File Type
7019594 Journal of Membrane Science 2018 9 Pages PDF
Abstract
The overall permeation rate through asymmetric oxygen transport membranes is significantly governed by the porous support. Therefore, the microstructuring of the support's pore structure is essential to achieving the highest performances. Freeze casting is already proven to obtain hierarchical porous structures with low tortuosity, which potentially enhances the oxygen flux of oxygen transport membranes. Although a performance improvement has been reported, such improvement is not self-evident. There has yet to be a detailed comparison of the achieved microstructures in order to identify the relevant microstructural parameters. Asymmetric membranes from Ba0.5Sr0.5(Co0.8Fe0.2)0.97Zr0.03O3-δ consisting of a surface-activated 20 µm membrane layer with tape- or freeze-cast supports that have identical pore volume and layer thickness were manufactured, characterized, and compared by means of oxygen flux measurements. They were also microstructurally investigated via computed X-Ray tomography and flow simulation experiments. In the air/Ar gradient, the freeze-cast support membrane performs below the tape-cast-supported membrane. In particular, the transition zone close to the membrane, which is caused by the freezing process, significantly constrains the diffusivity and permeability of the support, and therefore leads to concentration polarizations. At temperatures below 800 °C, surface exchange kinetics at the membrane-support interface become rate-limiting.
Related Topics
Physical Sciences and Engineering Chemical Engineering Filtration and Separation
Authors
, , , , , , ,