Article ID Journal Published Year Pages File Type
7019695 Journal of Membrane Science 2018 41 Pages PDF
Abstract
A diluted ICP, which occurred when the selective layer faces receiving water (SL-Rw), was less severe than a concentrated ICP in the selective layer facing feed (SL-F) orientation. It resulted in higher overall membrane mass transfer coefficients (k0's) in the SL-Rw mode during the aqueous-aqueous extractive tests. In addition, less biofilm was observed on the smooth PDMS surface after 14-days CF-EMBR and S-EMBR operations in the selective layer facing biomedium (SL-Rbio) mode. In contrast, in the SL-F mode during EMBR operations, the ridges and valleys on the membrane surface were able to provide a more favourable micro-environment for microorganisms and protect them from external stresses. The mature micro-colonies that developed in the SL-F mode clogged the membrane support and enhanced concentrated ICP, resulting in a significant reduction of k0's by more than 58%. Moreover, as the shear force on the membrane surface due to up-flow of air bubbles in the S-EMBR could mitigate the biofilm attachment, the most effective biofilm control strategy found in this study was to operate the nanofibrous composite membrane in the S-EMBR configuration with a smooth selective layer facing the biomedium. This effectively decreased the amounts of protein by 86%, polysaccharides by 88% and total suspended solids (TSS) by 89% in the biofilms on membrane surface, and achieved the highest stable k0 of 7.0 × 10−7 m/s.
Related Topics
Physical Sciences and Engineering Chemical Engineering Filtration and Separation
Authors
, , , , ,