Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7020235 | Journal of Membrane Science | 2018 | 28 Pages |
Abstract
In order to achieve high H+ dialysis coefficients and highly selective of anion exchange membranes (AEMs) for diffusion dialysis (DD) in acid recovery applications, a series of mixed-charge PPO AEMs with quaternary ammonium(QA) and carboxylic acid groups were synthesized quantitatively via Cu(I)-catalysed “click chemistry”. In diffusion dialysis, using an acidic solution (HCl, 1 mol/L; FeCl2, 0.2 mol/L) as a simulated waste solution indicated that the as-obtained mixed-charge PPO AEMs displayed higher H+ dialysis coefficients and a higher H+/Fe2+ selectivity over that of typical AEMs despite their increased water uptake and lower volumetric IECv values. The highest H+ dialysis coefficients, 0.021 m/h, and H+/Fe2+ selectivity 34.52, membranes were achieved with PPO-X35Y20 at 30 °C. These values were much higher than that of the PPO-X40 membrane without carboxylic acid groups. Importantly, unlike previously reported AEMs for DD in which the H+/Fe2+ selectivity decreased as the IECw increased, (i.e., a trade-off effect between the UH+ and selectivity), the high IECw of the mixed-charge PPO AEMs tended to result in not only high H+ dialysis coefficients but also high H+/Fe2+ selectivities. It is assumed that the carboxylic acid groups in AEMs likely enhance the dialysis of H+ by the ion changing and hydrogen-bonding more with H+ than Fe2+, thus, cancelling out the 'trade-off' effect in DD for acid recovery.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Filtration and Separation
Authors
Liang Wang, Fan Zhang, Zhenxing Li, Jiayou Liao, Yingda Huang, Yinlin Lei, Nanwen Li,