Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7022278 | Journal of Membrane Science | 2014 | 10 Pages |
Abstract
A strong analogy exists between heat exchangers and osmotic mass exchangers. The effectiveness-number of transfer units (ε-NTU) method is well-known for the sizing and rating of heat exchangers. A similar method, called the effectiveness-mass transfer units (ε-MTU) method, is developed for reverse osmosis (RO) mass exchangers. Governing equations for an RO mass exchanger are nondimensionalized assuming ideal membrane characteristics and a linearized form of the osmotic pressure function for seawater. A closed form solution is found which relates three dimensionless groups: the number of mass transfer units, which is an effective size of the exchanger; a pressure ratio, which relates osmotic and hydraulic pressures; and the recovery ratio, which is the ratio of permeate to inlet feed flow rates. A novel performance parameter, the effectiveness of an RO exchanger, is defined as a ratio of the recovery ratio to the maximum recovery ratio. A one-dimensional numerical model is developed to correct for the effects of feed-side external concentration polarization and nonlinearities in osmotic pressure as a function of salinity. A comparison of model results to experimental data found in the literature resulted in an average error of less than 7.8%. The analytical ε-MTU model can be used for design or performance evaluation of RO membrane mass exchangers.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Filtration and Separation
Authors
Leonardo D. Banchik, Mostafa H. Sharqawy, John H. V,