Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7022437 | Journal of Membrane Science | 2013 | 6 Pages |
Abstract
To reduce membrane scaling, effectively desalinate seawater, and recover magnesium, acid and alkali from the desalination process, a novel five-chamber bioelectrochemical system (BES) was developed in this study. This development was based on a four-chamber BES proposed recently, called microbial electrolysis desalination and chemical-production cell (MEDCC). Results showed that the desalination efficiency of seawater in the five-chamber BES was two times of that in the MEDCC. Removal efficiencies of Na+, Mg2+, and Ca2+ within 18 h using the system were 65±2%, 100±0%, and 80±2%, respectively, which were 20%, 66%, and 36% higher than those in the MEDCC. With the form of Mg(OH)2 precipitation, 73% of the total magnesium in solutions was recovered from the cathodic surface. Although the removal efficiencies of Mg2+ and Ca2+ in the five-chamber BES were higher, the Mg2+ and Ca2+ scaling found on the membrane surface was only 38.5% and 18.5% of that in MEDCC, respectively. With the different removal mechanism of Mg2+/Ca2+ ions, the membrane scaling problem was better resolved in the five-chamber BES than the other desalination BESs. With reduction of membrane scaling, the production of alkali, acid, and magnesium, the five-chamber BES should be a promising way to realize an integrated utilization of seawater.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Filtration and Separation
Authors
Shanshan Chen, Haiping Luo, Guangli Liu, Renduo Zhang, Haohao Wang, Bangyu Qin, Yanping Hou,