Article ID Journal Published Year Pages File Type
7022481 Journal of Membrane Science 2013 9 Pages PDF
Abstract
Anti-adhesion and antimicrobial coatings were prepared and applied on commercial thin-film-composite (TFC) polyamide (PA) membrane to enhance anti-biofouling performance. Polyvinyl alcohol (PVA) coating was modified with cationic polyhexamethylene guanidine hydrochloride (PHMG) polymer to obtain antimicrobial performance. ATR-FTIR, SEM and AFM investigated the surface chemistry and morphology of the coated membranes. The contact angle measurement was used to determine hydrophilicity and surface energy. All coated membranes revealed more hydrophilic and lower surface roughness compared to uncoated membrane. Lower number of adhered Pseudomonas aeruginosa (P. aeruginosa) bacteria was detected on coated membranes, indicating anti-adhesion performance. The colony forming unit (CFU) and diffusion inhibition zone (DIZ) tests determined antimicrobial activity of the coated membranes against Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis), showing the antimicrobial performance of PHMG. The results suggested that an optimal anti-fouling surface could be obtained applying a coating, which combines anti-adhesion and antimicrobial performance.
Related Topics
Physical Sciences and Engineering Chemical Engineering Filtration and Separation
Authors
, , , , , , ,