Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
703104 | Electric Power Systems Research | 2016 | 10 Pages |
Abstract
This paper introduces a new and general frame-of-reference for true unified, iterative solutions of AC/DC power flows using the Newton-Raphson method. The emphasis is placed on the so-called multi-terminal VSC-HVDC systems. This frame-of-reference accommodates quite naturally any number of AC/DC sub-networks generated by an arbitrary number of VSC converters. Besides, each AC sub-network may contain any number of FACTS devices. The modeling approach adopted for the multi-terminal VSC-HVDC systems is incremental in nature. An AC system of arbitrary configuration is connected to the high-voltage side of the VSC's LTC transformer. In turn, the DC side of each pairing VSC is linked to a DC system of arbitrary configuration. The new model represents a paradigm shift in the way the fundamental frequency, positive sequence modeling of VSC-HVDC links are modeled, where the VSCs are not treated as idealized, controllable voltage sources but rather as compound transformer devices with which key control properties of the PWM-based converters are linked. In contrast to other contemporary approaches, the power flow iterative solutions carried out using the reference frame put forward in this paper exhibits a true quadratic convergence characteristic - in most credible cases, convergence to a tight power mismatch tolerance of eâ12 would be achieved in five or less iterations.
Keywords
Related Topics
Physical Sciences and Engineering
Energy
Energy Engineering and Power Technology
Authors
Enrique Acha, Luis M. Castro,