Article ID Journal Published Year Pages File Type
704341 Electric Power Systems Research 2016 9 Pages PDF
Abstract
This paper presents a decentralized coordinated excitation and steam valve adaptive control combined with a high-order sliding mode differentiator. The aim is to obtain high performance for the terminal voltage and the rotor speed simultaneously under a sudden fault and a wide range of operating conditions. The methodology adopted is based on second order sliding mode technique using the supper twisting algorithm. The proposed scheme requires only local information on the physically available measurements of relative angular speed, active electric power and terminal voltage with the assumption that the power angle and mechanical power input are not available for measurement. It can be implemented locally and dispersedly for individual generators and is convenient for industrial applications. Simulation results in the case of the Kundur 4-machines 2-area power system show the effectiveness, robustness and superiority of the proposed scheme over the classical AVR/PSS controller and steam valve PI regulator.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , ,