Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7043571 | Separation and Purification Technology | 2018 | 13 Pages |
Abstract
For the first time we have introduced, also independently using Buckingham-Pi analysis, a brand new dimensionless parameter, Beta, which measures the equivalent “thickness” of additional cake deposition (in molten form) to the viscous flow resistance “path length” due to the additional cake deposit. A high-capacity filter aimed for heavy aerosol loading should have large Beta that results in low solidosity, high porosity, and high permeability for the cake. In our study, the microfiber-nanofiber composite filter has the highest Beta of nearly 4 and also highest efficiency. Despite high efficiency the single nanofiber filter has much lower Beta of 2, while the single microfiber filter has Beta of 3, yet much lower efficiency, especially at initial filtration. Using the microfiber-nanofiber composite filter design, we can “engineer the cake” deposited on the filter to be more permeable and with least flow resistance during aerosol loading to attain high Beta values. This is an innovative approach to increase the badly needed aerosol storage capacity with low pressure drop for the nanofiber filter while maintaining high efficiency throughout the aerosol loading for extended filtration applications. The highly permeable aerosol cake can also be cleaned by backpulsed-and-backblow readily for filter reuse.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Filtration and Separation
Authors
Wallace Woon-Fong Leung, Curie Wing-Yi Hau, Hung-Faat Choy,