Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
705122 | Electric Power Systems Research | 2008 | 11 Pages |
The paper presents a new variation of selective harmonic elimination pulse-width modulation (SHE-PWM) technique suitable for a high-power five-level converter used in constant frequency utility applications. The governing system of equations associated with the elimination of specific harmonics is defined based on an equal number of switching transitions when compared against the single-carrier sinusoidal PWM (SC-SPWM) technique. For this paper, it is assumed that the modulating signal (triangular carrier) of the equivalent SC-SPWM method has twenty per unit frequency. The switching transitions for every quarter period are therefore distributed between the converter levels according to the modulation index of SC-SPWM. It is confirmed that the proposed technique offers significantly higher converter bandwidth and higher dc bus utilization for the same switching transitions. Furthermore, the proposed SHE-PWM offers better harmonic performance compared to its SC-SPWM counterpart. Selected solutions for the switching transitions are presented and verified experimentally in order to confirm the effectiveness of the proposed technique.