Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7051358 | European Journal of Mechanics - B/Fluids | 2015 | 11 Pages |
Abstract
Laminar forced convection heat transfer of water-Cu nanofluids in a microchannel was studied utilizing the lattice Boltzmann method (LBM). The entering flow was at a lower temperature compared to the microchannel walls. Simulations were performed for nanoparticle volume fractions of 0.00 to 0.04 and slip coefficient from 0.005 to 0.02. The model predictions were found to be in good agreement with earlier studies. The effects of wall slip velocity and temperature jump of the nanofluid were studied for the first time by using lattice Boltzmann method. Streamlines, isotherms, longitudinal variations of Nusselt number, slip velocity and temperature jump as well as velocity and temperature profiles for different cross sections were presented. The results indicate that LBM can be used to simulate forced convection for the nanofluid micro flows. Moreover, the effect of the temperature jump on the heat transfer rate is significant. Also, the results showed that decreasing the values of slip coefficient enhances the convective heat transfer coefficient and consequently the Nusselt number (Nu) but increases the wall slip velocity and temperature jump values.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Fluid Flow and Transfer Processes
Authors
Arash Karimipour, Alireza Hossein Nezhad, Annunziata D'Orazio, Mohammad Hemmat Esfe, Mohammad Reza Safaei, Ebrahim Shirani,