Article ID Journal Published Year Pages File Type
7052073 Experimental Thermal and Fluid Science 2016 40 Pages PDF
Abstract
In order to systematically assess the effect of coating thickness on the evaluated heat transfer, the present investigation reports on the application of three different liquid crystal types in layers in transient experiments. These were conducted for two different flow regimes using separate test facilities, i.e. a flow over a tetrahedra-shaped vortex generator and jet flows from an in-line row of orifices within a low aspect ratio impingement channel. Reynolds numbers of 100,000 and 50,000 based on hydraulic and jet orifice diameter were investigated, respectively. Upon consideration of the actual liquid crystals' coating thicknesses from measurements, the investigations show that disregarding the layer thicknesses can lead to a significant underestimation of the resulting heat transfer, particularly for large thicknesses. By taking into account the respective coating thicknesses the experimental discrepancies could be reduced from 14% to less than 5%, accomplishing high data redundancy.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , , ,