Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7052109 | Experimental Thermal and Fluid Science | 2015 | 48 Pages |
Abstract
This paper presents a fixed-scope overview of experimental works on laboratory-scale swirl flame burners where significant reporting of results or data bases exists. The study focuses on selected gaseous fuel burners that span premixed, partially premixed and non-premixed combustion over unconfined and confined conditions. Whilst this is by no-means a comprehensive (topical) review into swirl combustion, it is aimed at guiding interested researchers in navigating a way through the vast literature published on laboratory-based swirl burners. These configurations typically encompass highly resolved flow- and/or compositional-fields derived from non-intrusive laser diagnostics. In addition to time-averaged flow-fields, measured data also typically includes flame stability/structure characteristics (flame shape/blow- or lift-off) as well as combustion instabilities. The paper draws upon a wide body of knowledge to summarise the current understanding of the effects of swirl and confinement on flow behaviour, emission characteristics, flame stabilization, and flow instability in laboratory-scale swirl burners.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Fluid Flow and Transfer Processes
Authors
Yasir M. Al-Abdeli, Assaad R. Masri,