Article ID Journal Published Year Pages File Type
705217 Electric Power Systems Research 2008 8 Pages PDF
Abstract

In this paper, a robust PID control scheme is proposed for the permanent magnet synchronous motor (PMSM) using a genetic searching approach. Genetic algorithms (GAs) are powerful searching algorithms based on the mechanics of natural selection and natural genetics. Based on a simple genetic algorithm, a set of PID parameters can be obtained such that the robust stability for the closed-loop system is guaranteed, the tracking performance is minimized subject to certain related cost function, and the disturbance rejection ability (H∞ performance) subject to a prescribed attenuation level can also be achieved. Numerical solutions of the PID parameters constrained by three different objectives and simulation results are provided to illustrate the design procedure and the expected performances. Finally, the proposed PID control scheme for the PMSM is implemented by a DSP-based fully digital controller. From the experimental results, the performances can be achieved using the proposed PID control scheme. In opposition to trial and error, the PID parameters can be obtained systematically in this study. The proposed method is simple and is suitable for practical control design in the motor drive.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , ,