Article ID Journal Published Year Pages File Type
7052417 Experimental Thermal and Fluid Science 2015 8 Pages PDF
Abstract
The present study demonstrates an alternative approach for describing fluid flow characteristics very close to the wall, using locally resolved convective heat transfer experiments. Heat transfer coefficients on the base surface and around a surface mounted vortex generator of delta-wing shape design, are evaluated with the transient liquid crystal measurement technique and over a range of freestream velocities. Therefore, the local values of exponent m in the equation Nux∼Rexm, which is directly linked to the structure of the boundary layer, can be determined over the complete heat transfer area. The local distributions of exponent m are then directly compared to the footprint of the flow obtained with typical oil and dye surface flow visualisation. The results indicate that a more appropriate interpretation of the flow structures very close to the wall is possible by analysing the spatial variation of exponent m, which approximates better the flow pattern compared to the heat transfer coefficients. As a result, fluid flow topologies can be directly evaluated from the heat transfer experiments since the distributions of oil-flow visualisation and exponent m are qualitatively similar.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , ,