Article ID Journal Published Year Pages File Type
705369 Electric Power Systems Research 2011 8 Pages PDF
Abstract

Nonlinear controllers such as fuzzy controllers and sliding mode controllers have been applied to boost converters because of their nonlinear properties. Although both fuzzy and sliding mode controllers have desirable characteristics, they have disadvantages in practice when applied individually. A sliding mode fuzzy controller is proposed to control boost converters. The sliding mode fuzzy controller combines the advantages of both fuzzy controllers and sliding mode controllers. It also has advantages of its own that are well suited for digital control design and implementation. A sliding mode fuzzy controller is designed and verified with experimental results using a prototype boost converter with a DSP-based digital controller. Experimental results of the boost converter using sliding mode fuzzy control are evaluated in comparison with experimental results using a linear PID and PI controller. The comparison indicates that the sliding mode fuzzy controller is able to obtain the desired transient response under varying operating points without chattering. The startup response using sliding mode fuzzy control is superior to the response using PID and PI control, while the load transient response shows no obvious advantage.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , ,