| Article ID | Journal | Published Year | Pages | File Type | 
|---|---|---|---|---|
| 7053874 | International Journal of Heat and Mass Transfer | 2018 | 15 Pages | 
Abstract
												In this paper the results of experimental study of vapor bubbles dynamics at pool boiling of various liquids in a wide range of heat fluxes up to q/qCHFâ¯â¼â¯0.9 are presented. The experiments were performed at boiling of saturated water and ethanol at atmospheric pressure with the use of high-speed experimental techniques including video macro-visualization and IR thermography from the bottom side of a transparent heated sample. As a result, new data on the growth rate of vapor bubbles and dry spots in their base, evolution of the liquid microlayer region and unsteady temperature field of a thin film heater surface were obtained, and analysis of patterns of process at low heat fluxes was carried out. The usage of high-speed experimental techniques also allowed in this study to investigate the evolution of vapor bubbles with formation of vapor patterns and large agglomerates, to study dry spots dynamics, to estimate void fraction close to heating surface at fully developed nucleate boiling regime up to the critical heat flux depending on liquid properties. Obtained experimental information can be further used to construct more accurate physical models for the theoretical description of microcharacteristics, heat transfer and boiling trigger mechanisms at nucleate boiling of liquids with different physical properties.
											Related Topics
												
													Physical Sciences and Engineering
													Chemical Engineering
													Fluid Flow and Transfer Processes
												
											Authors
												Anton Surtaev, Vladimir Serdyukov, Jingjing Zhou, Aleksandr Pavlenko, Vladislav Tumanov, 
											