Article ID Journal Published Year Pages File Type
7054172 International Journal of Heat and Mass Transfer 2018 13 Pages PDF
Abstract
In the present study, an efficient methodology to treat incompressible flows with variable properties outside the range of validity of the OB approximation is proposed. In the context of this methodology, the variable coefficient Poisson equation for the pressure is transformed into a constant coefficient Poisson equation using a pressure-correction scheme. In addition, all thermophysical properties are considered to be temperature dependent for all terms of the conservation equations. The proposed methodology is validated against results provided by previous studies on the natural convection flow of air, water and glycerol. Moreover, the potential of this methodology is demonstrated with the direct numerical simulation (DNS) of the NOB Rayleigh-Bénard convection of water inside a three-dimensional (3D) cavity. The comparison between two-dimensional (2D) and 3D results reveals significant differences, highlighting the need for efficient methodologies capable to accurately simulate NOB problems in 3D.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,